not strictly statistically significant. Nevertheless, taken together these results are not inconsistent with the conclusion that there is more π back bonding from Co to $\mathrm{C}(\mathrm{C}) \mathrm{O}(\mathrm{C})$ than to the other carbonyl ligands. This point is one of several that we are currently addressing through extended Hückel molecular orbital calculations on [$\left.(\mathrm{CO})_{3} \mathrm{CoB}_{10} \mathrm{H}_{12}\right]^{-}$ and related species.

Distances and angles within the $\left[\mathrm{PhCH}_{2} \mathrm{NMe}_{3}\right]^{+}$ cation are unexceptional and fully consistent with those determined in recent studies in this department (Mitchell \& Welch, 1987; Wynd \& Welch, 1989).

We thank the SERC for support (SAM) and the Callery Chemical Company for a generous gift of $\mathrm{B}_{10} \mathrm{H}_{14}$.

References

Brill, R., Dietrich, H. \& Dierks, H. (1971). Acta Cryst. B27, 2003-2018.

Crook, J. E. (1982). PhD thesis. Univ. of Leeds, England.
Fritchie, C. J. (1967). Inorg. Chem. 6, 1199-1203.
Gould, R. O. \& Smith, D. E. (1986). CADABS. A program for data reduction. Univ. of Edinburgh, Scotland.
Gould, R. O. \& Taylor, P. (1986). CALC. A program for molecular geometry calculations. Univ. of Edinburgh, Scotland.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Kennedy, J. D. (1986). Prog. Inorg. Chem. 34, 211-434.
Klanberg, F., Wegner, P. A., Parshall, G. W. \& Muetterties, E. L. (1968). Inorg. Chem. 7, 2072-2077.

Mallinson, P. \& Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53.
Mitchell, G. F. \& Welch, A. J. (1987). J. Chem. Soc. Dalton Trans. pp. 1017-1025.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination and refinement. Univ. of Cambridge, England.
Walker, N. G. \& Stuart, D. (1983). Acta Cryst. A39, 158-166. Wynd, A. J. (1988). PhD thesis. Univ. of Edinburgh, Scotland. Wynd, A. J., Macgregor, S. A., Yellowlees, L. J. \& Welch, A. J. (1990). Work in progress.

Wynd, A. J. \& Welch, A. J. (1989). Acta Cryst. C45, 615-617.
Wynd, A. J., Welch, A. J. \& Parish, R. V. (1989). J. Chem. Soc. Dalton Trans. Submitted.

Three Chromium(III) Complexes with Mixed Amino Acid Ligands: (l-Cysteinato)-(L-histidinato)chromium(IIII) 3•5-Hydrate, (L-Aspartato)(L-histidinato)chromium(III) 1.5-Hydrate and Bis(Dl-histidinato)chromium(III) Chloride 4•2-Hydrate

By Kathryn Madafiglio, Therese M. Manning, Cheryl M. Murdoch, William R. Tulip,* Mervyn K. Cooper, Trevor W. Hambley and Hans C. Freeman \dagger
Department of Inorganic Chemistry, University of Sydney, Sydney 2006, Australia

(Received 27 October 1988; accepted 11 July 1989)

Abstract

Cr(L-Cys)(L-His)]. $3 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (I): $\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{8}-\right.\right.$ $\left.\left.\mathrm{N}_{3} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{NO}_{2} \mathrm{~S}\right)\right] \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=388 \cdot 4, \quad$ orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=13.808$ (2), $b=20.228$ (3), $c=$ $23.367(5) \AA, \quad V=6526.6 \AA^{3}, \quad Z=16, \quad D_{x}=$ $1.581 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $8.12 \mathrm{~cm}^{-1}, F(000)=3232, T=294 \mathrm{~K}$, final $R=0.037$ for 4668 reflections. [$\mathrm{Cr}(\mathrm{L}-\mathrm{Asp})(\mathrm{L}-\mathrm{His})] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (II): $\left[\mathrm{Cr}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{NO}_{4}\right)\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right)\right] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=364 \cdot 2$, orthorhombic, $P 2_{1} 22_{1}, a=6 \cdot 135$ (1), $b=11 \cdot 398$ (1), c $=20.191(1) \AA, \quad V=1411.9 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.713 \mathrm{~g} \mathrm{~cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $7.99 \mathrm{~cm}^{-1}, F(000)=752, T=294 \mathrm{~K}$, final $R=0.037$ for 1253 observed reflections. [$\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}$]Cl.4.2$\mathrm{H}_{2} \mathrm{O}$ (III): $\left[\mathrm{Cr}\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{O}_{2}\right)_{2}\right] \mathrm{Cl} .4 \cdot 2 \mathrm{H}_{2} \mathrm{O}, M_{r}=471 \cdot 4$, orthorhombic, $C c c a, a=15 \cdot 334$ (3), $b=32.038$ (8), c

[^0]$=16.635$ (2) $\AA, V=8172.3 \AA^{3}, Z=16, D_{x}=1.532$, Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=7.00 \mathrm{~cm}^{-1}, \quad F(000)=$ $3920, T=294 \mathrm{~K}$, final $R=0.056$ for 1789 reflections. The ligands in all three complexes are tridentate. In (I) (four complexes per asymmetric unit) and (II) the arrangement of the ligands is fac-cis- N (amino), cisO(carboxyl). In (III) two isomers, fac-transN (imidazole) and fac-trans- N (amino), cocrystallize. Metal-ligand bond lengths are: $\mathrm{Cr}-\mathrm{N}$ (amino) 2.043 (5)-2.068 (5) $\AA, \quad \mathrm{Cr}-\mathrm{O}($ carboxyl) 1.963 (3)1.998 (4) $\AA, \quad \mathrm{Cr}-\mathrm{S}($ thiol $) \quad 2.371$ (2)-2.397 (2) \AA, $\mathrm{Cr}-\mathrm{N}$ (imidazole) 2.037 (4)-2.078 (5) \AA. There is evidence that $\mathrm{Cr}-\mathrm{S}($ thiol $)$ bonds exert a structural trans effect, and that their lengths in turn are influenced by the softness of the ligand in the trans position.

Introduction. Few structure analyses of amino acid complexes of Cr have been reported. Among these © 1990 International Union of Crystallography
only one represents a complex with mixed amino acid ligands. We have determined the structures of the title compounds in order to produce additional benchmark values for the interactions of Cr with more complex biological ligands such as peptides and proteins.*

Experimental. [Cr(L-Cys)(L-His)]. $3 \cdot 5 \mathrm{H}_{2} \mathrm{O}$: A solution of $\mathrm{Cr}^{\text {III }}$ nitrate nonahydrate $(1.00 \mathrm{~g}, 2.5 \mathrm{mmol})$, L-cysteine $(0.30 \mathrm{~g}, 2.5 \mathrm{mmol})$ and L-histidine $(0.39 \mathrm{~g}$, 2.5 mmol) in water (15 ml) was heated under reflux. Sodium hydroxide ($0.30 \mathrm{~g}, 7.5 \mathrm{mmol}$) in water $(10 \mathrm{ml})$ was added to the boiling solution. The mixture was refluxed for 3 h , then concentrated on a rotary evaporator at 313 K . The viscous solution was applied to a Sephadex A-25 anion exchange column and eluted with water. The second of three distinct bands was collected, then again concentrated at 313 K . Large well formed crystals were obtained after slow cooling of the hot solution. Structure solved by direct methods (Sheldrick, 1976), all non-H atoms anisotropic, H atoms included at sites calculated assuming idealized geometry ($\mathrm{C}-\mathrm{H}, 0.97$; $\mathrm{N}-\mathrm{H}, 0.91 \AA$). Block-matrix least-squares refinement on F converged with shifts $<0 \cdot l \sigma$ in positional parameters of non-H atoms. Maximum excursions in a final difference map were 0.4 and $-0.3 \mathrm{e} \AA^{-3}$.
$[\mathrm{Cr}(\mathrm{L}-\mathrm{Asp})(\mathrm{L}-\mathrm{His})] .1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$: Prepared as described by Watabe, Yano, Odaka \& Kobayashi (1981). Structure solved by Patterson methods, all non-H atoms anisotropic, H atoms located and refined. Block-matrix least-squares refinement on F converged with all shifts $<0 \cdot 5 \sigma$. Maximum excursions in a final difference map were 0.4 and $-0.5 \mathrm{e} \AA^{-3}$.
$\left[\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}\right] \mathrm{Cl} \cdot 4 \cdot 2 \mathrm{H}_{2} \mathrm{O}: \quad \mathrm{A}$ solution of $\mathrm{Cr}^{\mathrm{II}}$ chloride hexahydrate ($2.66 \mathrm{~g}, 10 \mathrm{mmol}$), DL-histidine $(1.88 \mathrm{~g}, 12 \mathrm{mmol})$ in water acidified with $\mathrm{HCl}(\mathrm{pH}=$ $3 \cdot 5$) was heated for $30-40 \mathrm{~min}$ at 333 K . Saturated potassium hydroxide was added dropwise to the warmed solution until the pH reached 8 . The purple precipitate which formed on cooling overnight was filtered off. Large orange crystals were observed in the solution after several weeks. Structure solved by Patterson methods, origin chosen at $\overline{1}$, non-H atoms refined anisotropically, H atoms included at calculated sites with isotropic temperature factors except for water H atoms which were refined with fixed bond lengths and angles. Full-matrix least-squares refinement on F converged with shifts $<0 \cdot 1 \sigma$. Maximum excursions in a final difference map were 0.5 and $-0.4 \mathrm{e}^{\AA^{-3}}$.

All crystals mounted on glass fibres with epoxy resin, data collected using Enraf-Nonius CAD-4

[^1]Table 1. Summary of data collection and processing parameters for $[\mathrm{Cr}(\mathrm{L}-\mathrm{Cys})(\mathrm{L}-\mathrm{His})] \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}),[\mathrm{Cr}(\mathrm{L}-$ Asp)($\mathrm{L}-\mathrm{His})] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (II) and $\left[\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}\right] \mathrm{Cl}$.$4 \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (III)

	(I)	(I)	(III)
Crystal dimensions (mm)	$0.10 \times 0.18 \times 0.18$	$0.40 \times 0.09 \times 0.10$	$0.15 \times 0.15 \times 0.25$
Data collection range (${ }^{\circ}$)	$2<2 \theta<50$	$2<2 \theta<50$	$2<2 \theta<50$
Scan width (${ }^{\circ}$)	$1.00+0.35 \tan \theta$	$1.00+0.35 \tan \theta$	$1.00+0.35 \tan \theta$
Horizontal counter aperture (${ }^{\circ}$)	$2.40+0.50 \tan \theta$	$2.40+0.50 \tan \theta$	$2.40+0.50 \tan \theta$
Scan type	$\omega-\theta$	$\omega-4 \theta / 3$	$\omega-\theta$
Absorption correction:*			
number of sampling points	$6 \times 6 \times 6$	$6 \times 6 \times 6$	$8 \times 8 \times 8$
maximum correction	1.15	$1 \cdot 11$	$1 \cdot 11$
minimum correction	1.07	1.06	1.09
Range of hkl	h: 0-16	h: 0-7	h: 0-18
	k: 0-23	k: 0-13	k: 0-36
	l: 0-27	l: 0-23	l: 0-19
Total data collected	6348	1486	4072
Data with $I>2.5 \sigma(I)$	4668	1253	1789
Total variables	816	265	288
R	0.037	0.037	0.056
$w R$	0.041	0.053	0.079
Weighting constant $\dagger k$ $\left\{w=1 /\left[\sigma^{2}\left(F_{o}\right)+k F_{o}^{2}\right]\right\}$	0.0035	0.0013	0.0039
GOF	1.64	-	-
* Coppens, Leiserowitz \& Rabinovich (1965). \dagger Weighting constants refined, σ determined from counting statistics.			

automatic diffractometer, graphite-monochromated Mo $K \alpha$ radiation; 25 independent reflections with 19 $\leq 2 \theta \leq 25^{\circ}$ used for least-squares determination of cell constants. Intensities of three reflections monitored, less than 3% decomposition in each case.
Calculations were performed using the SHELX76 system of programs (Sheldrick, 1976). Figures were drawn using ORTEP (Johnson, 1965). Scattering factors (neutral Cr for $\mathrm{Cr}^{\mathrm{II}}$) and anomalousdispersion terms were taken from International Tables for X-ray Crystallography (1974). Data collection and refinement parameters are collected in Table 1. Final positional parameters are listed in Tables 2, 3 and 4.*

Discussion. The structures of the metal complexes are shown in Figs. 1-4. The asymmetric unit of (I) consists of four independent complexes each with a cis- N (amino), cis-O(carboxyl),trans- N (imidazole)/ S (thiol) arrangement of the ligands, and 14 water molecules. In (II) there is only one independent complex, and 1.5 water molecules are disordered over three sites. The arrangement of the donor atoms in the complex is cis-N(amino),cis-O(carboxyl),transN (imidazole)/ O (carboxyl). In (III) there are two independent complexes, one chloride is disordered

[^2]Table 2. Atomic coordinates and $B_{\mathrm{eq}}\left(\AA^{2}\right)$ values with e.s.d.'s in parentheses for $[\mathrm{Cr}(\mathrm{L}-\mathrm{Cys})(\mathrm{L}-\mathrm{His})] \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O}$

Table 2 (cont.)

	x	y	z	$B_{\text {eq }}{ }^{*}$
OW(9)	-0.1860 (6)	-0.1434 (3)	-0.4300 (4)	$8 \cdot 22$
$\mathrm{OW}(10)$	0.4735 (5)	0.0933 (4)	0.4845 (3)	7.09
$\mathrm{OW}(11)$	-0.3878 (6)	-0.1781 (4)	-0.3843 (4)	$9 \cdot 11$
$\mathrm{OW}(12)$	-0.2279 (6)	-0.0657 (5)	-0.3261 (4)	9.70
$\mathrm{OW}(13)$	-0.1450 (8)	-0.0212 (4)	-0.8687 (4)	10.71
$\mathrm{OW}(14)$	-0.1680 (7)	-0.1214 (5)	-0.0522 (5)	11.81
* $B_{\text {eq }}=\left(8 \pi^{2} / 3\right)\left(U_{11}+U_{22}+U_{33}\right)$.				

Table 3. Atomic coordinates and $B_{\mathrm{eq}}\left(\AA^{2}\right)$ with e.s.d.'s in parentheses for $[\mathrm{Cr}(\mathrm{L}-$ Asp $)(\mathrm{L}-\mathrm{His})] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$

	\boldsymbol{x}	y	z	$B_{e q}^{*}$
$\mathrm{Cr}(1)$	$0.1038(1)$	$0.2007(1)$	$0.1226(1)$	3.07
$\mathrm{O}(2)$	$0.3822(6)$	$0.1589(3)$	$0.1652(2)$	3.77
$\mathrm{O}(3)$	$0.2048(6)$	$0.1244(4)$	$0.0410(2)$	3.69
$\mathrm{~N}(4)$	$0.0206(7)$	$0.0367(4)$	$0.1546(2)$	3.18
$\mathrm{O}(5)$	$0.5752(5)$	$0.0057(4)$	$0.1996(2)$	4.18
$\mathrm{O}(6)$	$0.2517(6)$	$-0.0196(4)$	$-0.0316(2)$	4.67
$\mathrm{C}(7)$	$0.2235(8)$	$-0.0315(5)$	$0.1510(2)$	3.09
$\mathrm{C}(8)$	$0.4117(8)$	$0.0479(5)$	$0.1745(2)$	3.16
$\mathrm{C}(9)$	$0.2623(8)$	$-0.0741(6)$	$0.0808(2)$	3.59
$\mathrm{C}(10)$	$0.2365(7)$	$0.0151(5)$	$0.0265(2)$	3.43
$\mathrm{O}(11)$	$0.1785(7)$	$0.3549(4)$	$0.0856(2)$	5.00
$\mathrm{~N}(12)$	$-0.1954(8)$	$0.2454(4)$	$0.0854(2)$	3.59
$\mathrm{O}(13)$	$0.0400(12)$	$0.5349(4)$	$0.0774(2)$	7.37
$\mathrm{~N}(14)$	$-0.0003(8)$	$0.2801(4)$	$0.2084(2)$	4.08
$\mathrm{~N}(15)$	$-0.0346(12)$	$0.3191(4)$	$0.3135(2)$	5.66
$\mathrm{C}(16)$	$-0.2089(12)$	$0.3759(5)$	$0.0915(3)$	4.76
$\mathrm{C}(17)$	$0.0193(13)$	$0.4269(5)$	$0.0841(2)$	5.24
$\mathrm{C}(18)$	$-0.3029(12)$	$0.4045(6)$	$0.1604(3)$	5.23
$\mathrm{C}(19)$	$-0.1730(11)$	$0.3573(5)$	$0.2165(3)$	4.47
$\mathrm{C}(20)$	$-0.1921(14)$	$0.3813(6)$	$0.2820(3)$	5.84
$\mathrm{C}(21)$	$0.0816(13)$	$0.2607(5)$	$0.2683(3)$	4.72
$\mathrm{O}(22) \dagger$	$-0.3113(19)$	$0.7072(9)$	$0.0627(6)$	7.69
$\mathrm{O}(23) \dagger$	$-0.1846(25)$	$0.7543(12)$	$0.0949(7)$	7.28
$\mathrm{O}(24) \dagger$	$-0.5716(23)$	$0.6114(12)$	$0.0540(6)$	9.24

* $B_{\text {eq }}=\left(8 \pi^{2} / 3\right)\left(U_{11}+U_{22}+U_{33}\right)$.
\dagger Occupancies: $\mathrm{O}(22) 0.64, \mathrm{O}(23) 0 \cdot 50(2), \mathrm{O}(24) 0.64(1)$.
over two sites separated by $2 \cdot 17 \AA$, and 4.2 water molecules are disordered over seven sites. The ligands at the two independent Cr atoms are arranged differently: one Cr has the cis- N (amino),-cis-O(carboxyl),trans-N(imidazole) arrangement observed previously in $\left[\mathrm{Cr}(\mathrm{L}-\mathrm{His})_{2}\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ (Pennington, Cordes, Kyle \& Wilson, 1984), and the other has a trans- N (amino), cis- O (carboxyl),transN (imidazole) arrangement. Both complexes lie on C_{2} axes. It follows that the species occurring in the unit cell are $\left[\mathrm{Cr}(\mathrm{L}-\mathrm{His})_{2}\right]^{+}$and $\left[\mathrm{Cr}(\mathrm{D}-\mathrm{His})_{2}\right]^{+}$. Curiously, when the analogous $\mathrm{Co}^{\text {III }}$ complex is prepared in a similar way, only the $[\mathrm{Co}(\mathrm{D}-\mathrm{His})(\mathrm{L}-\mathrm{His})]^{+}$species is observed (Bagger, Gibson \& Sorensen, 1972; Thorup, 1977).

When α-amino acids act as tridentate ligands in an octahedral complex they are geometrically constrained to facial ($f a c$) coordination. In the present series there are potentially three structural isomers of each complex, depending on the relative orientations of the two ligands. The potential isomers, and those which actually occur in the crystals, are as follows:

Complex	$\mathrm{NH}_{2} / \mathrm{NH}_{2}$	$\mathrm{COO}^{-} / \mathrm{COO}^{-}$	$\mathrm{N}_{\text {imid }} / X$
(I), (II), (III)	cis	cis	trans
	cis	trans	cis
(III)	trans	cis	cis

Table 4. Atomic coordinates and B_{eq} values $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses for $\left[\mathrm{Cr}(\mathrm{D}, \mathrm{L}-\mathrm{His})_{2}\right] \mathrm{Cl} \cdot 4 \cdot 2 \mathrm{H}_{2} \mathrm{O}$

Space group Ccca, origin at T.				
	x	y	z	$B_{\text {eq }}{ }^{*}$
$\mathrm{Cr}(1)$	0.0000	0.3794 (1)	0.2500	3.93
$\mathrm{Cr}(2)$	0.2500	0.5000	0.4528 (1)	$3 \cdot 38$
$\mathrm{O}(1)$	0.0838 (3)	0.4228 (1)	0.2816 (3)	4.33
O(2)	$0 \cdot 2152$ (4)	0.4487 (2)	0.2532 (3)	$5 \cdot 31$
$\mathrm{O}(3)$	0.3459 (3)	0.4911 (1)	0.5294 (3)	3.92
$\mathrm{O}(4)$	0.4707 (3)	0.4570 (2)	0.5454 (3)	5.03
N(1)	0.0673 (4)	0.3845 (2)	0.1432 (3)	4.06
N(2)	0.0891 (4)	0.3347 (2)	0.2799 (3)	4.66
N(3)	0.1530 (5)	0.2833 (2)	0.3417 (4)	6.44
N(4)	$0 \cdot 3505$ (4)	0.4901 (2)	0.3737 (3)	$4 \cdot 28$
N(5)	0.2298 (3)	0.4372 (2)	0.4537 (3)	3.73
N(6)	0.1733 (5)	0.3764 (2)	0.4826 (4)	5.44
C(1)	0.1566 (5)	0.3967 (2)	0.1661 (4)	4.63
C(2)	$0 \cdot 1536$ (5)	0.4260 (2)	0.2381 (4)	4.33
C(3)	0.2114 (6)	0.3578 (2)	0.1864 (5)	$5 \cdot 54$
C(4)	0.1736 (5)	0.3317 (2)	0.2520 (5)	$5 \cdot 06$
C(5)	0.0800 (6)	0.3046 (2)	0.3337 (5)	5.65
C(6)	0.2128 (7)	0.2996 (2)	0.2906 (5)	$6 \cdot 11$
C(7)	0.4094 (4)	0.4603 (2)	0.4130 (4)	4.48
C(8)	0.4119 (4)	0.4701 (2)	0.5034 (4)	3.85
C(9)	0.3785 (4)	0.4165 (2)	0.4005 (5)	4.86
C(10)	0.2909 (5)	$0 \cdot 4066$ (2)	0.4358 (4)	$4 \cdot 30$
C(11)	$0 \cdot 1607$ (5)	0.4179 (2)	0.4810 (5)	4.92
C(12)	0.2565 (6)	0.3688 (2)	0.4543 (5)	5.48
$\mathrm{Cl}(1)+$	$0 \cdot 1071$ (2)	$0 \cdot 2058$ (1)	0.4606 (2)	6.82
$\mathrm{Cl}(2) \dagger$	0.0039 (11)	0.1719 (6)	0.5213 (10)	9.59
OW(1)	0.3664 (6)	0.4576 (3)	0.1722 (5)	8.48
$\mathrm{OW}(2) \dagger$	0.0539 (8)	0.3262 (4)	0.5604 (6)	9.77
$\mathrm{OW}(3) \dagger$	0.4387 (9)	0.3787 (5)	0.1876 (8)	8.47
OW(4)	0.1491 (17)	0.2651 (7)	0.6110 (16)	$30 \cdot 32$
OW(5)	0.4228 (51)	0.2500	0.2500	$35 \cdot 37$
$\mathrm{OW}(6) \dagger$	0.5000	0.4910 (19)	0.2500	29.85
$\mathrm{OW}(7) \dagger$	0.5000	0.4230 (17)	0.2500	$17 \cdot 37$
$\begin{array}{r} * B_{\mathrm{eq}} \\ \dagger \\ \mathrm{D} \text { Dis } \\ \mathrm{O} W(3) \end{array}$	$\left.\pi^{2} / 3\right)\left(U_{11}+\right.$ red atoms, $O W(6) 0 \cdot 6$	$\left.U_{33}\right)$ pancies: C $V(7) 0 \cdot 40$		$\mathrm{O} W(2)$

Among the seven mononuclear 2:1 amino acid: $\mathrm{Cr}^{\text {III }}$ complexes which have been studied previously (Table 6), five have the cis- N (amino), cis-O(carboxyl) arrangement. The two exceptions are complexes where a cis- N (amino), cis- O (carboxyl) arrangement is prevented by steric interactions between bulky substituents on the N (amino) atoms (Mootz \& Wunderlich, $1980 a, c$). In the present study, further examples of the cis- N (amino), cis-O(carboxyl) arrangement are found in (I), (II) and one isomer of (III). The second isomer of (III) is transN (amino), cis-O(carboxyl) and provides the first apparent exception to the general trend observed in other crystal structures. There are, however, precedents which suggest that the identification of one isomer or another in the crystalline state does not exclude the formation of other isomers. For example, [$\mathrm{Cr}(\mathrm{L}-\mathrm{His})(\mathrm{L}-$ or $\mathrm{D}-\mathrm{Cys})]$ isomerizes in water at temperatures above 278 K (Odaka, Hasegawa \& Watabe, 1985); and the preparation of $\left[\mathrm{Cr}(\mathrm{L}-\mathrm{His})_{2}\right]^{+}$ yields two of the possible three isomers, one being identified as the cis- N (amino),trans-O(carboxyl) isomer on spectroscopic grounds (Hoggard, 1981), and the other as the cis- N (amino), cis-O(carboxyl) isomer by structure analysis (Pennington, Cordes, Kyle \& Wilson, 1984). Thus it is probable that the relative preparative yields of [bis(amino
acidato) $\mathrm{Cr}^{\mathrm{II}]}$ isomers in the solid state are influenced not only by intramolecular steric and electronic effects but also by efficient packing and intermolecular hydrogen bonding (i.e. by solubility and crystallizability). The influence of intermolecular forces on the crystal structures of amino acidato complexes of kinetically labile metals such as $\mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{1 \mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$

Fig. 1. View of $[\mathrm{Cr}(\mathrm{L}-\mathrm{Cys})(\mathrm{L}-\mathrm{His})]$ in compound (I).

Fig. 2. View of [$\mathrm{Cr}(\mathrm{L}-\mathrm{Asp})(\mathrm{L}-\mathrm{His})]$ in compound (II).
has long been taken for granted (Freeman, 1967). On the time scale of the formation of crystals or solid precipitates, the relative kinetic inertness of $\mathrm{Cr}^{\text {III }}$ complexes becomes irrelevant.

The crystals of (I), (II) and (III) all contain extensive hydrogen-bond networks connecting N (amino) and O (water) atoms to $\mathrm{Cl}^{-}, \mathrm{S}$ (thiol), O (carboxyl) and O (water) atoms. Compound (III) is noteworthy (Fig. 5). The structure consists of layers of complexes with their Cr atoms at $y=0, \frac{1}{2}$ and near $y=0 \pm \frac{1}{8}, \frac{1}{2} \pm \frac{1}{8}$, layers of water molecules and chloride ions near $y=\frac{1}{4}$, and channels of water molecules parallel to x near $y=0, \frac{1}{2}$ at $z=\frac{1}{4}$. The $\mathrm{Cr}-\mathrm{N}$ (amino), $\mathrm{Cr}-\mathrm{O}$ (carboxyl) and - with one exception - $\mathrm{Cr}-\mathrm{N}$ (imidazole) bond lengths found in the present study (Table 5) are within the ranges reported previously (Table 6). The longest $\mathrm{Cr}-\mathrm{N}$ (imidazole) bond, $2 \cdot 078$ (5) \AA, occurs in (I). We shall refer to it in our discussion of the $\mathrm{Cr}-\mathrm{S}$ (thiol) trans effect (see below). The imidazole rings in all complexes are planar within 0.010 (3) \AA.* The deviations of the Cr atoms from the imidazole ring planes are 0.23 (1)- 0.48 (1) \AA in (I), 0.13 (1) \AA in (II), and 0.13 (1) \AA [trans to $\mathrm{N}($ amino $)$] and 0.24 (1) \AA [trans to N (imidazole)] in (III). Similar deviations have been found in other octahedral Cr complexes of histidine (Pennington, Cordes, Kyle \& Wilson, 1984). The range of values found in the four independent

Fig. 3. View of the Ll-trans-N(amino),cis-O(carboxyl),cisN (ㄹmidazole) isomer of $\left[\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}\right]^{+}$in compound (III). In the crystal, pairs of the corresponding LL and DD isomers are related by the space-group glide operations.
formula units of (I) suggests that the deviations of the Cr atoms are affected not only by intramolecular strain but also by crystal packing forces.
The lengths of the four independent $\mathrm{Cr}-\mathrm{S}$ (thiol) bonds in (I), $2 \cdot 371$ (2)-2.397 (2) \AA, span a range of 7σ (Table 5). The significant differences among these bond lengths may be caused partly by hydrogen bonding. The shortest $\mathrm{Cr}-\mathrm{S}$ (thiol) bond in (I) is formed by $S(11)$, which is involved in only one weak hydrogen bond; the other three S atoms are each involved in two relatively strong hydrogen bonds.

Fig. 4. View of the Ll -cis- N (amino), cis-O(carboxyl),transN (imidazole) isomer of $\left[\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}\right]^{+}$in compound (III). In the crystal, pairs of the corresponding LL and DD isomers are related by the space-group glide operations.

Fig. 5. Stereoview of the unit cell of $\left[\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}\right] \mathrm{Cl} .4 \cdot 2 \mathrm{H}_{2} \mathrm{O}$. Origin at bottom left ($0 \leq x \leq a$ into paper, $0 \leq y \leq 0.75 b$ vertical, $0 \leq z \leq c$ horizontal). (Unconnected spheres represent, in increasing order of size, Cl^{-}ions, ordered $\mathrm{H}_{2} \mathrm{O}$ molecules and disordered $\mathrm{H}_{2} \mathrm{O}$ molecules.)

Table 5. Selected bond lengths $(\AA \AA)$ and angles $\left({ }^{\circ}\right)$ in $[\mathrm{Cr}(\mathrm{L}-\mathrm{Cys})(\mathrm{L}-\mathrm{His})] \cdot 3 \cdot 5 \mathrm{H}_{2} \mathrm{O}[(\mathrm{I})$, four formula units 1-4], $[\mathrm{Cr}(\mathrm{L}-$ Asp $)(\mathrm{L}-H i s)] \cdot 1 \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (II) and $\left[\mathrm{Cr}(\mathrm{DL}-\mathrm{His})_{2}\right] \mathrm{Cl} \cdot 4 \cdot 2 \mathrm{H}_{2} \mathrm{O}[(\mathrm{III})$, two formula units $1-2]$

Compound Complex	1	2	3	4	(II)	1*	$2 \dagger$
Cysteine/aspartate ligand							
$\mathrm{Cr}-\mathrm{N}$ (amino)	2.053 (5)	2.065 (5)	2.048 (5)	2.068 (5)	$2 \cdot 043$ (5)		
$\mathrm{Cr}-\mathrm{O}($ carboxyl) \ddagger	1.988 (4)	1.968 (4)	1.998 (4)	1.987 (4)	1.970 (4)		
$\mathrm{Cr}-\mathrm{S}$ (thiol)	2.371 (2)	2.380 (2)	2.389 (2)	$2 \cdot 397$ (2)			
$\mathrm{Cr}-\mathrm{O}($ carboxyl)§					1.963 (3)		
$\mathrm{N}($ amino $)-\mathrm{Cr}-\mathrm{O}$ (carboxyl) \ddagger	78.7 (2)	79.5 (2)	79.8 (2)	$79 \cdot 1$ (2)	$81 \cdot 8$ (2)		
N (amino)- $\mathrm{Cr}-\mathrm{S}$ (thiol)	84.1 (1)	82.8 (1)	83.4 (1)	82.9 (1)			
$\mathrm{N}\left(\right.$ amino - $-\mathrm{Cr}-\mathrm{O}$ (carboxyl) ${ }^{\text {d }}$					86.5 (2)		
O (carboxyl) $\ddagger-\mathrm{Cr}-\mathrm{S}$ (thiol)	90.5 (1)	91.1 (1)	88.9 (1)	89.4 (1)			
O (carboxyl) $\ddagger-\mathrm{Cr}-\mathrm{O}$ (carboxyl)§					89.2 (1)		
Histidine ligand							
$\mathrm{Cr}-\mathrm{N}($ amino $)$	2.056 (5)	2.057 (5)	2.056 (5)	2.048 (5)	$2 \cdot 048$ (5)	2.061 (5)	2.052 (5)
$\mathrm{Cr}-\mathrm{O}($ carboxyl) \ddagger	1.974 (4)	1.983 (4)	1.978 (4)	1.978 (4)	1.964 (5)	1.064 (5)	1.967 (4)
$\mathrm{Cr}-\mathrm{N}$ (imidazole)	2.078 (5)	2.059 (5)	2.067 (5)	2.068 (5)	2.057 (4)	2.041 (6)	$2 \cdot 037$ (5)
$\mathrm{N}($ amino $)-\mathrm{Cr}-\mathrm{O}($ carboxyl $) \ddagger$	81.0 (2)	$80 \cdot 1$ (2)	$80 \cdot 6$ (2)	$81.2(2)$	81.2 (2)	81.2 (2)	$80 \cdot 3$ (2)
$\mathrm{N}($ amino $)-\mathrm{Cr}-\mathrm{N}$ (imidazole)	85.7 (2)	86.4 (2)	86.1 (2)	87.0 (2)	$85 \cdot 5$ (2)	86.0 (2)	$88 \cdot 0$ (2)
O (carboxyl) $\ddagger-\mathrm{Cr}-\mathrm{N}$ (imidazole)	89.0 (2)	88.8 (2)	88.9 (2)	89.5 (2)	89.9 (2)	89.6 (2)	$88 \cdot 1$ (2)
	* trans- N (Amino), cis- O (carboxyl), cis- N (imidazole) isomer. \dagger cis- N (Amino), cis- O (carboxyl),trans- N (imidazole) isomer. $\ddagger \mathrm{O}$ atom of main-chain carboxyl group of L-Asp. $\S \mathrm{O}$ atom of side-chain carboxyl group of L-Asp.						

Table 6. $\mathrm{Cr}-\mathrm{N}$ (amino), $\mathrm{Cr}-\mathrm{O}($ carboxyl) and $\mathrm{Cr}-\mathrm{N}$ (imidazole) distances (\AA) in previously reported bis $(\alpha-$ amino acidato)chromium(III) complexes

Complex	Cr -ligand distances				Reference
	N(amino)	O (carboxyl)	N (imidazole)	S(thiol)	
$\mathrm{Na}\left[\mathrm{Cr}(\mathrm{L}-\mathrm{Cys})_{2}\right] .2 \mathrm{H}_{2} \mathrm{O}$	2.062 (2)	1.981 (1)	$2 \cdot 057$ (5)	2.416 (1)	(a)
[$\mathrm{Cr}(\mathrm{L}-\mathrm{His})(\mathrm{D}-\mathrm{Pen})] . \mathrm{H}_{2} \mathrm{O}$	2.063 (4)	$2 \cdot 013$ (4)			(b)
	2.094 (5)	1.989 (4)		$2 \cdot 332$ (2)	
$\mathrm{K}\left[\mathrm{Cr}\left\{\mathrm{HN}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right\}_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$	2.070 (6)	1.958 (4)			(c)
		1.969 (4)			
	2.058 (6)	1.958 (4)			
		1.954 (4)			
$\mathrm{Na}\left[\mathrm{Cr}\left\{i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right\}_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$2 \cdot 118$ (2)	1.956 (2)			(d)
		1.972 (2)			
$\mathrm{K}\left[\mathrm{Cr}\left\{t-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{COO}\right)_{2}\right\}_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$	2.152 (3)	1.953 (2)			(e)
		1.974 (2)			
$[\mathrm{Cr}(\mathrm{Ac-L-Ala})(\mathrm{L}-\mathrm{His})] . \mathrm{H}_{2} \mathrm{O}$	2.062 (4)	1.957 (4)	$2 \cdot 036$ (5)		(f)
	2.078 (5)	1.947 (4)			
		1.960 (3)			
$\left[\mathrm{Cr}(\mathrm{L}-\mathrm{His})_{2}\right] \mathrm{NO}_{3} . \mathrm{H}_{2} \mathrm{O}$	2.043 (3)	1.972 (3)	2.062 (3)		(g)
	2.052 (4)	1.970 (3)	2.050 (3)		

References: (a) Meester, Hodgson, Freeman \& Moore (1977); (b) Meester \& Hodgson (1977a); (c) Mootz \& Wunderlich (1980b); (d) Mootz \& Wunderlich (1980c); (e) Mootz \& Wunderlich (1980a); (f) Sato, Kosaka \& Watabe (1985); (g) Pennington, Cordes, Kyle \& Wilson (1984).
Abbreviations: $\quad i$ - $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}=$ isopropyliminodiacetate; $\quad t$ - $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}=N$-tert-butyliminodiacetate; \quad Ac-L-Ala $=\left(\mathrm{CH}_{2} \mathrm{COO}\right) \mathrm{NH}-$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COO}^{-}, N$-carboxylatomethyl-L-alaninate.

We conclude that $\mathrm{Cr}-\mathrm{S}$ (thiol) bonds are weakened by hydrogen bonding at the S atom. The absence of a similar effect on $\mathrm{Cr}-\mathrm{N}($ amino $)$ and Cr (carboxyl) interactions is possibly associated with the lower polarizabilities of the N and O donor atoms.

Evidence for a $\mathrm{Cr}-\mathrm{S}($ thiol $)$ trans effect. Apart from the possible dependence of $\mathrm{Cr}-\mathrm{S}($ thiol) bond lengths on hydrogen bonding (see above), the values of the four independent $\mathrm{Cr}-\mathrm{S}$ (thiol) bond lengths in (I) lead to a second correlation. Each of the four bonds is trans to an N (imidazole), and each is longer than the distance $2.332(2) \AA$ observed in $[\mathrm{Cr}(\mathrm{D}-$ $\mathrm{Pen})(\mathrm{L}-\mathrm{His})] . \mathrm{H}_{2} \mathrm{O}$ where the S (thiol) is trans to the O (carboxyl) of histidine (Meester \& Hodgson,

1977a). An even longer $\mathrm{Cr}-\mathrm{S}$ (thiol) distance, $2 \cdot 416$ (1) \AA, occurs in $\mathrm{Na}\left[\mathrm{Cr}(\mathrm{L}-\mathrm{Cys})_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$. In the latter complex, two S (thiol) atoms are trans to each other (Meester, Hodgson, Freeman \& Moore, 1977). Thus it appears that the order of increasing $\mathrm{Cr}-\mathrm{S}$ (thiol) bond length is also the order of increasing softness of the ligand atom trans to the S (thiol) atom [$\mathrm{O}<\mathrm{N}$ (imidazole) $<\mathrm{S}$]. Further, among the four independent $\mathrm{Cr}-\mathrm{S}$ (thiol) bonds in (I), the shortest is trans to the longest $\mathrm{Cr}-\mathrm{N}$ (imidazole) bond (the outlier to which we have referred above). This observation suggests a complementarity between the strengths of a $\mathrm{Cr}-\mathrm{S}($ thiol $)$ bond and the bond trans to it.

The elongation of $\mathrm{Cr}-\mathrm{S}$ bonds when they are trans to another S donor atom has been noted previously (Stein et al., 1976; Meester, Hodgson, Freeman \& Moore, 1977). Evidence for a lengthening of other $\mathrm{Cr}-$ ligand bonds trans to $\mathrm{Cr}-\mathrm{S}$ (thiol) bonds in $\mathrm{Cr}^{\text {III }}$ complexes has previously been only marginal. In $\left[\mathrm{Cr}(\mathrm{en})_{2}\left(\mathrm{~S}-\mathrm{CH}_{2} \mathrm{COO}^{-}\right)\right]^{+}$the $\mathrm{Cr}-\mathrm{N}$ bond trans to the $\mathrm{Cr}-\mathrm{S}$ bond is $0.02 \AA(1.5 \sigma)$ longer than the mean of three $\mathrm{Cr}-\mathrm{N}$ bonds cis to the $\mathrm{Cr}-\mathrm{S}$ bond; in the analogous $\mathrm{Co}^{\mathrm{II}}$ complex the difference is $0.04 \AA$ (Elder, Florian, Lake \& Yacynych, 1973). A case which appears to have escaped notice until now occurs in [$\mathrm{Cr}(\mathrm{L}-\mathrm{His})(\mathrm{D}-\mathrm{Pen}] . \mathrm{H}_{2} \mathrm{O}$ where the $\mathrm{Cr}-\mathrm{O}$ (carboxyl) bond trans to the $\mathrm{Cr}-\mathrm{S}$ (thiol) bond is significantly longer than all the other $\mathrm{Cr}-\mathrm{O}$ (carboxyl) bonds of histidine ligands listed in Tables 5 and 6 (Meester \& Hodgson, 1977a). The present work provides the first example of the lengthening of a $\mathrm{Cr}-\mathrm{N}$ (imidazole) bond when it is trans to a strong $\mathrm{Cr}-\mathrm{S}$ (thiol) bond. A possible explanation is that $\mathrm{Cr}-\mathrm{S}$ (thiol) bonds cause, and are affected by, a ground-state trans effect (Stein et al., 1976).

Such a structural trans effect would be consistent with kinetic evidence for a dynamic trans effect in $\mathrm{Cr}^{\mathrm{III}}-\mathrm{S}$ (thiol) complexes. For example, the coordinated S atom of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CrSR}\right]^{3+}$ and $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CrSH}\right]^{2+}$ labilizes the trans site towards substitution by a variety of ligands. The $\mathrm{Cr}-\mathrm{S}$ bond is, in turn, labilized by the incorporation of a ligand into the trans site, so that the substitution kinetics of $\left[\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{CrSR}\right]^{3+}$ reflect both the labilization of the $\mathrm{H}_{2} \mathrm{O}$ trans to the $\mathrm{Cr}-\mathrm{S}$ bond and the relative ease of Cr-S bond fission (Asher \& Deutsch, 1976). The dynamic trans effect involves both the ground and excited states, whereas the structural trans effect is a ground-state phenomenon. The two effects must be connected but their origins are not yet clear.

According to a purely electrostatic theory, the structural trans effect can be described as a polarization of the thiolate ligand by the charge on the metal atom, the polarization of the metal atom by the induced dipole on the thiolate, and a resultant weakening of the bond to the ligand in the trans position (see for example Cotton \& Wilkinson, 1980). The fact that $\mathrm{Cr}^{\mathrm{III}}-\mathrm{S}$ bonds are more labile than $\mathrm{Co}^{\mathrm{II}}-\mathrm{S}$ bonds in some reactions is then explained partly by the smaller crystal-field activation energy of the d^{3} electron configuration (Weschler \& Deutsch, 1973). The electrostatic model has some attraction since it accounts, at least qualitatively, for the observed $\mathrm{Cr}-\mathrm{S}$ (thiol) bond length variations in response to the trans donor type and hydrogen-bonding effects.

On the other hand, recent evidence that imidazole (Winter, Caruso \& Shepherd, 1988) and even Cl^{-} (Hambley \& Lay, 1986) can act as π donors to $\mathrm{Cr}^{\mathrm{III}}$
suggests that $p_{\pi}-d_{\pi}$ interactions between the S and Cr atoms may also play a role. If the trans ligand competes with the S atom as a π donor, then the $\mathrm{Cr}-\mathrm{S}$ (thiol) bond length should increase as the π donor effectiveness of the trans ligand increases, i.e. in the order O (carboxylate) (weak) $<\mathrm{N}$ (imidazole) (moderate) $<\mathrm{S}$ (thiol) (strong π donor). This is the case. The effect of hydrogen bonding at the S atom may be to reduce the contribution of the $\mathrm{S} p_{z}$ orbital to $p_{\pi}-d_{\pi}$ bonding. An apparent weakness of this π bonding hypothesis is that it requires a vacancy in an orbital of suitable symmetry on the metal atom. Such a vacancy exists in the $t_{2 g}^{3}$ configuration of $\mathrm{Cr}^{\text {III }}$ but not in the $t_{2 g}^{6}$ configuration of $\mathrm{Co}^{\text {IIII }}$. The structural trans effect of S (thiol) is, however, even greater in Co ${ }^{\text {III }}$ than in $\mathrm{Cr}^{\text {III }}$ complexes, as shown by the structure analyses of $\left[M(\mathrm{en})_{2}\left(\mathrm{~S}-\mathrm{CH}_{2} \mathrm{COO}^{-}\right)\right]^{+}$(Elder, Florian, Lake \& Yacynych, 1973) and [M(L-His)(DPen)]. $\mathrm{H}_{2} \mathrm{O}$ (Meester \& Hodgson, 1977a,b). Accordingly, while π bonding may make a contribution, it is difficult to rationalize the trans effect of $\mathrm{Cr}-\mathrm{S}$ (thiol) bonds in terms of π bonding alone.

This work was supported by a Commonwealth Postgraduate Research Award (to CMM) and by grants C80/15377 and A2860032P from the Australian Research Grants Scheme (to HCF).

References

Asher, L. E. \& Deutsch, E. (1976). Inorg. Chem. 15, 1531-1537.
Bagger, S., Gibson, K. \& Sorensen, C. S. (1972). Acta Chem. Scand. 26, 2503-2510.
Coppens, P., Leiserowitz, L \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.
Cotton, F. A. \& Wilkinson, G. (1980). Advanced Inorganic Chemistry, 4th ed., pp. 1199-1202. New York: WileyInterscience.
Elder, R. C., Florian, L. R., Lake, R. E. \& Yacynych, A. M. (1973). Inorg. Chem. 12, 2690-2699.

Freeman, H. C. (1967). Adv. Protein Chem. 22, 257-424.
Hambley, T. W. \& Lay, P. A. (1986). Inorg. Chem. 25, 4553-4558.
Hoggard, P. E. (1981). Inorg. Chem. 20, 415-420.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Meester, P. De \& Hodgson, D. J. (1977a). J. Chem. Soc. Dalton Trans. pp. 1604-1607.
Meester, P. de \& Hodgson, D. J. (1977b). J. Am. Chem. Soc. 99, 101-104.
Meester, P. de, Hodgson, D. J., Freeman, H. C. \& Moore, C. J. (1977). Inorg. Chem. 16, 1494-1498.

Mootz, ${ }^{\text {D D. \& WUNDERLICH, H. (1980a). Acta Cryst. B36, }}$ 445-447.
Mootz, D. \& Wunderlich, H. (1980b). Acta Cryst. B36, 721-722.
Mootz, D. \& Wunderlich, H. (1980c). Acta Cryst. B36, 1189 1191.

Odaka, Y., Hasegawa, Y. \& Watabe, M. (1985). Bull. Chem. Soc. Jpn, 58, 3373-3374.

Pennington, W. T., Cordes, A. W., Kyle, D. \& Wilson, E. W. Jr (1984). Acta Cryst. C40, 1322-1324.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Stein, C., Bouma, S., Carlson, J., Cornelius, C., Maeda, J., Weshler, C., Deutsch, E. \& Hodgson, K. O. (1976). Inorg. Chem. 15, 1183-1186.

Thorup, N. (1977). Acta Chem. Scand. Ser. A, 31, 203-207.
Watabe, M., Yano, H., Odaka, Y. \& Kobayashl, H. (1981). Inorg. Chem. 20, 3623-3627.
Weschler, C. J. \& Deutsch, E. (1973). Inorg. Chem. 12, 2682-2690.
Winter, J. A., Caruso, D. \& Sheperd, R. E. (1988). Inorg. Chem. 27, 1086-1089.

Acta Cryst. (1990). C46, 561-562

Structure of Bis(dimethylglyoximato- N, N^{\prime})(thiourea-S)copper(II)

By M. Koman, * M. Máriássy and G. Ondrejovič
Department of Inorganic Chemistry, Slovak Technical University, 81237 Bratislava, Czechoslovakia

(Received 15 February 1989; accepted 7 July 1989)

Abstract

Bis(2,3-butanedione dioximato- N, N^{\prime})-(thiourea-S)copper(II), $\quad\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{2}\right)_{2}\left(\mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{~S}\right)\right]$, $M_{r}=369 \cdot 88$, monoclinic, $P 2_{1} / c, a=15 \cdot 117$ (14), $b=$ 11.569 (6), $\quad c=8.882$ (4) $\AA, \quad \beta=103.73$ (6) ${ }^{\circ}, \quad V=$ $1508.9(1.7) \AA^{3}, Z=4, D_{m}=1.63, D_{x}=1.63 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda(\mathrm{Cu} K \alpha)=1.5418 \AA, \quad \mu=35.261 \mathrm{~cm}^{-1}, \quad F(000)=$ $764, T=293 \mathrm{~K}, R=0.055$ for 1306 observed reflections. The coordination polyhedron around Cu^{11} is a distorted tetragonal pyramid with four N atoms of the dioximato ligands forming the basal plane $[\mathrm{Cu}-\mathrm{N}$ distances in the range 1.946 (3)-1.956 (3) \AA] and thiourea S-bonded at the apex $[\mathrm{Cu}-\mathrm{S}$ $2 \cdot 484$ (1) Å].

Introduction. In our investigation of factors determining the stabilizing influence of dioximato ligands on Cu^{11} relative to Cu^{1}, several dioximato copper(II) complexes with reductive ligands, e.g. thiourea and its derivatives, triphenylphosphine and triphenylarsine, have been prepared. In order to clarify the bonding of the reductive ligands in these complexes, the crystal structure determination of the title complex was undertaken.

Experimental. Dark brown prismatic crystals, $0.30 \times$ $0.40 \times 0.20 \mathrm{~mm} ; D_{m}$ measured by flotation: Weissenberg photographs indicated space group $P 2_{1} / c$, Syntex $P 2_{1}$ diffractometer; cell parameters by least squares from 15 reflections with $9 \cdot 69 \leq 2 \theta \leq 31 \cdot 02^{\circ}$; intensity measurements from $\theta-2 \theta$ scans carried out for $0 \leq 2 \theta \leq 100^{\circ}$; range of $h k l: h-17 \rightarrow 17, k 0 \rightarrow$ $13, l 0 \rightarrow 10$. Two standard reflections after every 98 intensity measurements, no significant intensity variation; no correction for absorption; 2030 unique

[^3]reflections; 1306 independent reflections with $I \geq$ $3 \sigma(I) ; \mathrm{Cu}$ position from Patterson function, other non-H atoms from difference syntheses. Methyl and thiourea H atoms in calculated positions, oxime H atoms from difference syntheses. Anisotropic fullmatrix refinement (except H atoms) based on $F . R=$ $0.055, w R=0.060, w=k /\left[\sigma^{2}\left(F_{o}\right)+g\left(F_{o}\right)^{2}\right], k=1.0763$ and $g=0.003101 ;(\Delta / \sigma)_{\text {max }}$ in final least-squares cycle 0.30 ; max. and min. heights in final difference Fourier synthesis $=0.8$ and $-0.4 \mathrm{e} \AA^{-3}$. Calculations performed with SHELX76 (Sheldrick, 1976); scattering factors from International Tables for X-ray Crystallography (1974).

Discussion. Atomic coordinates of non- H atoms are given in Table 1; selected interatomic distances and bond angles are listed in Table $2 . \dagger$ The crystal structure consists of neutral square-pyramidal $\mathrm{Cu}(\mathrm{Hdmg})_{2}(\mathrm{tu})$ molecules with dioximato (Hdmg) ligands N -bonded in the equatorial plane and thiourea (tu) S-bonded in the apical position (Fig. 1).

The mean $\mathrm{Cu}-\mathrm{N}$ distance $[1.952$ (4) \AA] and the bond lengths and angles within the dioximato ligands agree well with those found in other five-coordinate complexes $\mathrm{Cu}_{2}(\mathrm{Hdmg})_{4}$ (Vaciago \& Zambonelli, 1970), $\mathrm{Cu}(\mathrm{Hdmg})_{2}(\mathrm{im})$ (im = imidazole) (Morehouse, Polychronopoulou \& Williams, 1980) and $\mathrm{Cu}-$ $(\mathrm{Hdpg})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)(\mathrm{Hdpg}=$ diphenylglyoxime $)($ Boualam \& Gleizes, 1983).

The $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds appear to be asymmetric with both H atoms bonded to the same
\dagger Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52401 (11 pp .). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.
© 1990 International Union of Crystallography

[^0]: * Present address: CSIRO Division of Biotechnology, 343 Royal Parade, Parkville 3052, Australia.
 \dagger Author to whom correspondence should be addressed.

[^1]: * Asp $=\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right) \mathrm{COO}^{-}, \quad$ His $=\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{C}_{3}{ }^{-}\right.$ $\left.\mathrm{N}_{2} \mathrm{H}_{3}\right) \mathrm{COO}^{-}, \quad \mathrm{Cys}=\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{2} \mathrm{~S}^{-}\right) \mathrm{COO}^{-}, \quad$ Pen $=\mathrm{NH}_{2} \mathrm{CH}-$ $\left[\mathrm{C}^{-}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}^{-}\right] \mathrm{COO}^{-}$(penicillamine).

[^2]: * Structure amplitudes, anisotropic thermal parameters of non-H atoms, full lists of bond lengths and angles, positional and thermal parameters of H atoms, details of hydrogen bonds and close contacts, and results of least-squares-planes calculations have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52414 (67 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^3]: * Present address: Czechoslovak Institute of Metrology, Bratislava, Czechoslovakia.

